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PREFACE 

This report is part of a continuing study into Methods of 
Determining In-Situ Rock Stresses at Great Depths.   Results of the 
first part of the study were reported in Technical Report No. 1-68, 
bearing the title underlined above and published in February, 1968 
by the Missouri River Division, Corps of Engineers, Omaha.   In that 
report it was noted that all current techniques of in-situ rock stress 
determination were based on the assumption that the rock behaved as 
a linearly elastic, Isotropie, continuum.   Since many rocks are not 
Isotropie it was felt tnat an analysis of the influence of rock anisotropy 
on the accuracy of the teenniques was needed.   It was therefore decided 
to attempt solutions to problems in whicn the rock was considered to 
behave as a transversely Isotropie elastic material.   A transversely 
Isotropie material is one for which the elastic properties are invariant 
with respect to rotations about a single axis only in the material. Five 
independent elastic constants (see Technical Report 1-68 p. 6) are 
necessary to define a transversely Isotropie material compared to two 
for Isotropie material.   Bedded or laminated rocks such as shales and 
gneisses appear to be fairly well described by the transversely isotropie 
model.   The use of more sophisticated models, involving a greater number 
of physical constants, -was considered unwarranted since experimental 
determination of the constants would be difficult and the mathematics 
quickly becomes intractable. 

The theoretical solution for the Stresses on the Surface of a 
Circular Hole in an Infinite Transversely Isotropie Elastic Medium due 
to General Stresses at Infinity and Hydrostatic Pressure at the Hole, was 
obtained by Dr. D. S. Berry, Department of Theoretical and Applied 
Mechanics, University of Nottingham, Nottingham, England, and if 
presented in Appendix 1 of Technical Report 1-68.   The solution enables 
the influence of rock anisotropy to be considered in the analysis of the 
hydraulic fracturing technique of stress determination. 

This report. The Theory of Stress Determination by Mea; s of 
Stress Relief Techniques in a Transversely Isotropie Medium , also by 
Dr. Berry, presents the analytical expressions for the strain.'  and dis- 
placements at the surface of a circular hole in an infinite tr* nsversely 
isotropie elastic medium due to general stresses at infinity,   This solution 
permits the influence of rock anisotropy to be considered i i the stress- 
relief (overeoring) techniques. 

Investigation of the effect of rock anisotropy on stresses in an 
elastic inclusion, the theoretical basis of the remaining   mportant class 
of stress-determination methods, is now in progress and will be published 
in a subsequent report. 

C. Fairhurst 
September 6,  1968 
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THE THEORY OF STRESS DETERMINATION BY MEANS OF 

STRESS RELIEF TECHNIQUES IN A TRANSVERSELY 

ISOTROPIC MEDIUM 

D. S. Berry 

1.    Introduction 

The use of the stress relief technique requires theoretical 
knowledge of the radial displacement in a long hole as the stress is 
removed by overcoring or other means.   Panek (1966) has pointed out 
that relief of stress in the axial direction affects the radial displace- 
ment in an Isotropie medium, while Berry and Fairhurst (1966) have 
incorporated this effect in calculating results for a transversely 
Isotropie medium in which a hole is drilled in the plane of symmetry 
or normal to it.   This report extends those results to an arbitrarily 
oriented hole drilled into a medium with any homogeneous state of 
stress. 

The author's previous work on the stress around a hole in a 
transversely isotropic medium (Appendix I of Tech. Rpt. No. 1-68 
by C. Fairhurst, referred to here as I) is drawn upon freely and the 
same notation is adopted.   The method of solution is based upon the 
work of Milne-Thomson (1962) on "anti-plane" strain. 

2.    Displacements due to antiplane strain 

As in I, the plane z =   0  defines an arbitrary cross-section 
of the hole, the x-axis is chosen to lie in a plane of elastic symmetry 
(the lines of intersection of these planer, with the plane of the paper 
are indicated in Figs. 1 and 3 ) in such a way that the angle 0 that 
the plane makes with the y - axis satisfies the condition 0 5 0  <   TT/2 
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Z  =   X, 

Fig. 1 

X = X, 

Fig. 2 

^   ^    Y  = x. 

Fig. 3 

(x i »Xo > X 'i) , 

The coordinate 
The   Ox'" 

system (x.y^z) is also referred to as 
direction is defined as the axis of elastic 

ii '   i      *       J — o " . 
symmetry (Fig. 3) and the direction cosines, a    = cos(x Ox  ) of 
the x. -coordinates with respect to the x"-coordinates are   given 
by 1(1.1).   The stress-strain relations in the xj'-system are given 
by 1(1.2) and 1(1.3), while the stress-strain relations in the xi - 
system are given by 1(1.5) and 1(1.6).   The regional stress tensor 
is given in terms of the principal stresses by 1(1.4). 

Section 2 of I shows how the stress distribution for an 
antiplane problem can be obtained in terms of three analytic 
functions 

Wv(zJ v   =   1,2,3 

z    =   x + X.   y , 
V V 

where the   \   are roots of the characteristic equation f(\) = 0 given 
by 1(2.17) aKd 1(2.18).   The stress components are actually given 
by the expressions 1(2.23): - 

3 

V 2 _ 2 _    _ 
a    =   i I     [ X. WJz .) +   X     W   (zj ]  , 

v=l 
V     V 

3 

_ 1T 
%' * v= 1 

I W  (z  ) H   W   (z   )    ]   , 
V      V V      V 
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xy 

3 
S1  

-i {.   [ X W (z) +  X  W (2  )   ] 
V=l        v     v    ^ V    V     V      J 

. .y 
xz 

yz 

i ^   [XHWI(Z)+XMW(2)] 
v:_ j      v v    vv       vvvvJ 

3 

-i^^t^W^z^   +üvWv(Iv)]    .j 

(2.1) 

while  a     is obtained from equation 1(2.5) : 
Z 

z 13 x 23 y 33   z 34   yz (2.2) 

The constants  lij , Mn »   ^    are given by 1(2.20). 

Substitution of the expressions (2.1) and (2.2) in the relations 
1(2.6) (valid for constant  «^ )   gives the following expressions for the 
strain components: 

3 

e    =    I    [ L.   W   (z )   +  L.   W   (z   )   ] +K,« x ,       Ivvv Ivvv 1 (2.3) 

;    =   A    [ L- W   (z)   +  L.  W   (z  )   ] +K0 y        _ 2v   v    v 2v   v     v 2 € (2.4) z 

= 1 2 Y       = L     [  Lc   W  (z   )   +   Lc W   (z  ) 1   . xy . L     6v    v    v 6     v     v   J 

v= 1 
(2.5) 

-I 2 Y      = Z.    [  L.   W (z   )   +   L. W   (z   )   ] + K.e . (2.6) yz        _ 4v    v    v 4v    v     v 4 z 

«>**t*»M|*ia<'m* 
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2Y xz 

3 

v=l 
( L- W   (2  )   +  L- W  (z ,)  ]  . 

5v   v    v 5v  v    v 
(2.7) 

where 

4L,     =  -t,,X     + 
Iv llXv   + ^12-^14^' 

4L2v ~  ln\    + ^2 " ^24^ ' 

6v 66  v 56   v   v 
(2.8) 

4v H  v 24 44   v 

5v 56   v 55 v   v 

and the   I      and K,   are given by I (2.6 ). 
rs j 

If we write V(z)=    Jw(z)dz,   then integration 
of (2.3) with respectvto  x and (2.v4) vwithvrespect to   y  yields 
the following two expressions for components of displacement 

3 

v = l 

3 r 

[ LlvVz)   +LlvVv(Zv)] + Kiezx4fl^ (2-9) 

V 
V     v^l 

J2v 
L9     -       -      "' 2v -   iZ -f* V    (z   )   +   -^ V    (z  ) 

X V       V T V       V 
V \ 

V 
' K2 e

Z
y "* f2(x) (2,10) 

where   f. (y)   and  f9(x)   are arbitrary functions.   An expression 
for   2Y       -   3u/äy  +   av/ax   can be found from (2.9) and (2.10) 
and comparison with (2.5) shows that  f^y)  and   f2(x)   are constants 
(which may be taken as zero since they correspond to rigid body motion 
only). 

Since we are considering deformations which are independent of 
z, we have that 

4 

_k_ 
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and so 

av/az   = öu/öz   s  0 

2Y      =^L    and    2Y       = ^ yz     d y xz       3x 

Then integration of (2.6) and (2.7) give 
3     r 

^-V   V   (z  )+^  V   (I) w =1 
v=l X        v    v     ~r v    v v X 

v 

+ K4e2y4f3(x) 

and 

w 
v= 1 . 

Lc  V  (z  )   +   L.   V   (z   ) 
5v v   v 5v  v    v + ^(y). 

(2.11) 

(2.12) t   ■ 

Hence, apart from constants, which may be Ignored 

f3(x)   sO,    f4(y)   =  K4ezy . 

Also, we find that 

L 

'5v        X 

d2(X   ) 

4 X 

a(3)(xv) 

'v "  d<2' (xv) 

2 3 
where   d  (X)   and  d (X)   are given by 1(2.18) and this is identically 
zero by the definition of u    in   1(2.20). 

Collecting the above results we have the following expressions 
for the three components of displacement: 

u= 1       L.   V (z )   ■(   L,   V   (z   )       +   K.e  x 
,       Iv  v    v Iv   V    V     I 1  z v= 1 J 

3 

v = l 
-^ V (z   )   -f   —   V    (z   | j   + K9e v , 
X V    V T V      V     ' ^Iz1 

b^u. — , , ■   -■        --     -     -   ■-■ ■ ——,__ 
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w =) 
v = l 

^ v (z ) + hy v  (I) 
v 

4 z 
(2.13) 

3.    Formulation of the problem. 

In the stress-relief method, diametral displacement indicators 
(possibly strain-gauges also) are inserted at a section of a hole 
sufficiently remote from its ends for their influence to be negligible, 
the surrounding stress is relieved and changes in diametral measure- 
ments of the hole are recorded, possibly changes in axial strain also. 
If the regional stress components are denoted by ( Ou)0 . as in Section 
of I, we can describe their removal as the application of stress com- 
ponents   - ( ^j)0 ,   and the boundary conditions can be stated as 
follows: 

a    -    T.=  T    =0 r rG        rz 

a     -   - (a   )    at   » 
ij v ij 'o 

on r - a 

j (3.1) 

Now these conditions are just those of 1(3.1) apart from the minus sign 
in front of ( c^ )0 .   In addition, it is specified in I Section 3 that 
€z   should be constant everywhere:   if we can show that that condition 
is satisfied in the stress-relief problem then the stress functions for 
the solution of 1(3.1) can be adopted for the present problem, merely 
with a change of sign.   It can be demonstrated as follows. 

Since we are assuming that the material conforms to the 
assumptions of classical elasticity we can invoke   the principle of 
superposition and, in particular, we know that the chronological 
order in which two or more constraints are imposed does not affect 
the resulting elastic field.   Consequently, the axial strain in a stress- 
relieved sample is the same as if the hole were made after  removal of 
the sample instead of before.   Now, at a cross section remote from the 
ends we can safely assume that the in situ drilling produces no axial 
strain.   Also, drilling a hole after removal produces no axial strain 
because the sample now has no applied stresses capable of producing 
any deformation.   However, the final state is the same in each case, 
so the axial strain is just that which is produced by relieving stress 
in the sample without a hole.   Thus the axial strain is not dependent 

^HMMMiM^ 
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on the presence of the hole and so is independent of position in 
the rock. 

If we write out the second set of conditions in (3.1) in non- 
tensor notation, using a,, .... T^,  ... for the regional stress 
components, we have at  • 

ax   =   " ai ' o    =  -a0, 
y 2 

a
z 

= -ar 

xy 12 yz 23 zx 31 

If these values are substituted in (2.2) we obtain the axial strain 
in terms of the regional stress components, valid for all    x and y 
since   e     is constant: z 

ez   =-(k13Gl   ik23a2   +   k33a3   +  k34T23 ,- 
(3.2) 

Elimination of e     between (2.2) and (3.2) leads to the 
condition z 

k13(jl + ^ -: k23(a2 < V ' k33(a3 ' ^ * h^Zl' Tyz) = 0 

(3.3) 

which is just 1(3.2), apart from the change of sign giving   a   = - (a ) , 
etc. 

4.    Solution of the general problem. 

The conditions to be satisfied are the values of the boundary 
tractions and stress components at infinity, given by (3.1), together 
with the general condition on the stress components given by (3.3). 

The complex potential method gives stress solutions in the 
form (2.1), apart from the component   a   which can be obtained from 
relation (3.3). 

The solution of 1(3.1) under condition 1(3.2) gives stress 
components denoted by (o^ etc. in  I  and is obtained from the 
complex potentials denoted by  [W (z ) ]..   Clearly the solution given 
by complex potentials 

7 
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W (z) = - [ W (z  ) ]l (4.1) 
V    V V    V       1 

will give stress components   a   = - ( o ), everywhere and a.. = -(o,.) x x 1 ij ij o 
at infinity in particular, thus satisfying the conditions (3.1) and (3,3). 

Thus, from Section 4 of I the stress-relief solution is given by 
(3.2) and (3.3) and the expressions 

-W (z ) = a      + W *(z   ) ,      v =   1,2,3, (4.2) 
v  v       vo v   v 

* vv   1        vv    2       vv    3 W (z )   =    vv ,  V      **-* (4.3) 
v" v - 2 2C   mv( C) 

z   =m    (C)   =  a (Y    C +  6  /C ) . (4.4) 
V V V V 

r    2      2   * z    4 [ z   - a   ] 
C    =  -^ ^  (4.5) 

2a Y 
v 

The various constants in (4.2) to (4.5) are given by equations 1(4.6) to 
I (4.9), with the addition 

2 2,, 2, 
av    =  a  (1   H-  Xv   ). 

Now, from 1(4.11) we have that 

6    C.   +  Y    C0   -.   |i    C.   = 2a(a     5     +A   ) (4.6) 
NV   1        vv   2       ^w    3 vo    v       v 

with the A    given by 1(4.12) , while it is easy to show that 

2 

Cn/U)   =   [ z^a2(l +\v
2)]    * (4.7) 

Substitution of (4.6) and (4.7) into (4.3) leads to the expression 

8 
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a      6   -. A 
TAf    /    \           vo   v        v W   (z )   -  —^7  

From (4.2) we then find the result 

A 

, 2       2.j 
z   - a 

v      v 

- 1 

-W (z )   = | te 
V   V vo 6 vo      6 

v v 

(4.8) 

,2        2   * 
(z     - a 

V V 

(4.9) 

and so by integration we find that 

A A 
-V  (z )     - ! W  (z ) dz   - Ha     - r^) z    , ^ (a    -f -^ )(z2- a2 )* 

v   v J     v   v       v     ^     vo     6 v vo    6 v       v 
v v 

(4.10) 

For the stress-relief problem we require the radial displacement 
at the boundary of the hole , r = a.   At the boundary 

and 

z   - x + X y   -   a(cos9 + X  sine ) 
v v v 

2       2 2 2       2 2 
z    - a    -  a  (cos9 -i k sine)   - a (I H X   ) 

v       v v v 

2 2 
-a    (sin6 - X cosB ) 

v 

so that 
(2 

2      2.^ 
- a   )^   =  i 

v      v 
a(sin9 - X    cos9 ). 

(The choice of sign here is immaterial because of the symmetry of the 
solution). 

Substitution in (4.10) leads to the result for r = a 

V U     " - a (a      ye     - A e 
V    V VO    V V 

(4.11) 

or 

V  (z ) - -a [ (a    Y  - A ) cose -; i(a    y    ; A ) sinB ] . (4.12) 
v   v vo v      v vo v      v 
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To obtain the radial displacement from these expressions and 
the displacement expressions (2.13) we note first that 

u   -t iu   =e'i9 (uf iv) . (4.13) 
r ö 

From (2.13) it then follows tnat 
3 

u   4 iu = e"i9j   1, I  (L,    +ir^) V (z ) -: (I,    4 i -^-) V (I )  ] 
r       9 (v^l lv       X v   v Iv       - v  v   J 

V 

a ez (KjCose    iK2sine)/. ■I 
Use of (4.11) then gives the result 

u   -;iu  =-aJ t    [   (L.    - i^ 
r       e        (v=l        lv      K 

) ( a     Y  - A e        ) 
'x   vov      v 

4 a,    -■ i 3^) (a    Y  e"2i9-A   )   ] 
lv ~ VO   v V 

V 

-t e^e"19 (KjCoseni^sinerf. (4.15) 
-/. 

We now put 

(4.14) 

L9 L 
G  =1,     +i-^ ,   H   =1,    - i r^- (4.16) 

v      lv X v       lv        X v v 

and take the real part of (4.15) to obtain 

u 
~JL'=  A   4 B cos 29- CsinZe , (4.17) 3 0 0 0 

where 3 

V 
A  = Re   ^    ( A H   - a     Y G     -1 ^ e   (K + Kj  , 0 v^ 1       V   V       vo V   V       2    z    1       2 

3 

B^ - Re '.     (AC    - a    Y H  )     £e    (K.  -   Cj , (4.18) 0 ,       V   V vovv K    z        \ 2 v- 1 

10 
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0 ^ ,       V    V VOVV 
* v= 1 

Equations (4.17) und (4.18)   give tne diametral expansion of 
tne nole (wnen tne regional stress is relieved) in terms of tne regional 
stress components (through tne   üV0  and   cz )   and the elastic constants 
of tne medium.   Tne orientation of tne hole, 0 . determines the values 
of the constants wnich actually appear in tne above equations, so that 
the values of  A0 , B^ and   C^   are dependent on   ,5 as well as on the 
regional stress components for a given rock mass. 

5 .     Tne exceptional cases . 

As the author explained in I, the cases   0   -   0, rr/2   are not 
covered by the general solution for antiplane strain in a transversely 
Isotropie medium because the stress functions   x (x.y) and C (x,y) 
then satisfy independent equations, instead of the mixed equations 
1(2.9) and 1(2.10).   The result is that components of displacement u 
and v (or ur  and   UQ )   are independent of the regional stress components 
T13and   T23- 

The required results for iadial deformation due to stress relief 
have been given by Berry and Fairhurst (196^) in terms of principal 
stress components assumed to lie parallel to the axis of the hole and 
normal to it.   The derivation of these results is given in this section, 
using the notation of this report. 

The result for an Isotropie material can be easily obtained from 
either of these results. 

5.1   Case  0 = 0 

We first show tne close correspondence between plane- 
strain problems in this case and similar problems in an Isotropie 
material.   This enables us to use the well known plane-strain result 
for a stress-free hole in an Isotropie material.   The correction for 
non-zero axial strain is then applied to complete tne solution. 

From 1(1. 5) and 1(5.1), the stress-strain relations for 0     Ü 
reduce to 

11 
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(5.1) 

x       11 x       12 y 13 z 

e   =• blO0   + b,  a   < b    a      , 
y        12 x        11  y        13 2 

e   ^ b,„a     -   b.,a   - b0„o    , 
z        13  x 16 y       33 z 

2V        =   b-.t yz 44  yz 

2Y        "    b-.i zx 44   zx 

2Y       =   2(b    - b,.) T     , 
xy 11      12    xy 

where the coefficients are given by 1(1.3) in terms of moduli and 
Poisson's ratios. 

For plane-strain,   e    =  y       =  Y      =0  and hence 
z yz zx 

b13 a    =   -  r^   (a   -. a ). (5.2) 
z b33        x      y 

By substitution from (5.2) the remaining three equations then become 

x 11 x        12 y 

e    =  l,~o    ■ I    o     , (5.3) 
y 12 x        ii y 

'xy 11      12    xy 

where 

12 



i      =   b 
11 11 

ll2   "   bl2 

13 
b 

b 

33 

2 
13 

b. 

n     2 
1 E2V2 

F F Ll Ll 

1 

33 ■^(v' 

!_     2 
:     v9 ) 
i 

(5.4) 

using 1(1.3). 

Now equations (5.4) nave precisely the same form as the 
plane-strain equations of an Isotropie medium. It follows that the 
same methods of solution are applicable (we have already seen in I 
that the stress function is biharmonic), and the actual solutions are 
identical so long as the constants of (5.4) are substituted for the 
corresponding constants for an Isotropie material.   The latter are 

1 
11 

1-v 
2n 

and    I 
I 
12 

_ v(lv) 
E 

v 
2^ 

(5.5) 

Solving for  n and   v we have 

1 

2^-^) 
and v   -    - 

12 

'11 '12 

(5.6) 

The general procedure is then to take the Isotropie solution, 

express  u and   v in terms of  I      and   I       by means of (5.6) and 

then to substitute the I  . and i ?   of (5.4).   The plane-strain solution 
for relief of regional stress components   o^, 03 •   rl2   arounc' a hole of 
radius a   in an Isotropie   me Uum gives a radial displacement of 

2 
1-v 

[    a   H 0, + 2 (a   - a  ) cos2e ♦ 4T    sin20 ] 

(5.7) 

The factor containing tne elastic constants can be replaced directly 
by-t,, by means of (5 . 5) and substitution of I., from (5.4) gives , 
for tne transversely Isotropie medium 

1 ■ 



13 
a        "^ll"  ^ ) t^ +02 '  2(0r02)COs2e44T12Sin2el   ' (5•8, 

This result is obtained on the assumption of plane-strain, in 
particular that ez   ^   0.   Since that is true only when the stress 
components are related as in (5.2), a correction term must be added to 
(5.8) to take account of the more general case.   It was noted in 
Section 3 that   e    is independent of position, so that we may substitute 
in the third equation of (5.1) the values of the stress components at 
infinity to determine   f^:  that is (since the effective values correspond 
to removal of the regional stress). 

(bl3ar'b13a2+b33a3)- (5.9) 

This strain is due to the fact that the axial stress,   q   , is greater than 
that given by the plane-strain condition (5.2) by a quantity   a° (say), 
and we must now use equations (5.1) to determine 
strains   e0   and   e0  which it causes. 

<§ and the additional 

By putting   a   = a   = 0 in (5.1) we find that 

o o       ,       o 
x y 13   z 

and hence 

z 33   z 

=   e 
'33 

and so, from (5.9) , in terms of the regional stresses. 

= -b13a3 
13   , . 

b33 1       2 
(5.10) 

Since   e      =   e    , the additional strain is independent of   9 and so 
induces    a diametral deformation of the same value at the hole. 
Addition of (5.10) to (5.8) leads to the final result for stress-relief: 

14 
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where 

A     -.   B cos2e   -    C  sin2e , 
o o o 

A     =   -b    (a   -. a ) -b    a,, 
o 111        I        1J J 

(5.11) 

(5.12) 

i 

\ 

or, from 1(1. 3); 

=   -^u-^   \2     • 

A     = 

B     = 

i;    (ai      a2    -V2a3)  ' 

I; (1 -v2 ^h'^ ■ (5.13) 

4   M 2 ^ 
i;(1-v2) Ti2- 

It should be noted that, for 0 = 0, the x and y directions are 
defined only to the extent that tney are normal to the axis of elastic 
symmetry. 

5.2    Case   j  =  r   . 

As noted in   I, the plane-strain problem in this case has been 
discussed by Green and Zerna (1954),  although the displacement 
solution has not been given.   However, it is possible to use the complex 
potentials given by them, as stated in 1(5.31) and 1(5.32), with the 
general expression tor the complex displacement, to obtain the plane- 
strain ciisplacement solution.   As before, the stress-relief solution is 
completed by making a correction for the non-zero axial strain. 

are 
From I(:.S) and 1(5.20), the stress-strrin relations for   0 ~-r- 

15 
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(5.14) 

e    =  b.-CJ       b10a    -i   b10o   , 
x 11 >:        13y 12 z 

e    =  b „a    -•   b0„a     ^   b.-a   , 
y 13 x 33  y 13  z 

e    =  b    a    -   b    a b-.o   , 
z 12 x 13  y Hz 

2Y        =b/./1T yz 44  yz 

2Y        -   2^..^.-) T 
zx 11     12     zx 

2Y      -  b..T       , 
xy 44 xy 

expressed in the coefficients of 1(1.3). 

For plane-strain,   e     -   y       =   Y      =   0  and hence 
z yz zx 

0z  -  -  b[1
(b12<'x   -   

fc13ay>   • '5-15' 

and the remaining equations become 

ex   ~   lnax   '   ll2ay   ' 

ey   =   ll2ax   S   ^22^   ' (5-16) 

where 

2Y      =   b.,! xy 44 xy 

K2 i 2 

,       _   h ^11   -   'jZl 
11   "     n ~   bll   "        El 

^12   "   bl3   "     b11        -   "EY0^^    ' 

16 
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^22   "   b33 ' b 
11 

1_ v. 

(5.17) 

b44   -   1/M . 

In the notation of Green and Zerna the complex displacement 
due to this kind of plane strain deformation in a transversely Isotropie 
medium can be expressed thus: 

u -i iv = b Q (z^ - pjQ'Cz^ + 62uu,(z2) -: P2Uü'(Z2) , 

where 

(5.18) 

61   =   (1 ^ Yi)ß2"(1'Yl)0l  ' 

62   =   (1 -i Y2V (1 - Y2)ß2   . 

pi   =   (l+Yi)ß2.(l.Yi)ßi    , 

P2   =   (1 f Y2)ß1 H (1 - Y2) ß2 . 

Hi . 2 
Y
j       CL 4 1    '    ßj "^12 " 't22aj   ' 

J 

(5.19) 

and 

al = ^ + tb44 ^ [  <t12-'*b4/-*12<22l 

^=t12+*b44-t(tl2
<*b44)2-tl2^l4 

z     =   z + Y z ,        ]   =   1,2  . 

17 



RMWMMMl   ' " ■■   - 

For problems involving circular boundaries the z   are more 
conveniently expressed in terms of new variables  C,   and   C9 such 
that 1 l 

Zj   =   Cj -   Y.aVCj  . j   =   1,2 . 

and then C =C7 - ae on the boundary (when z = ae ). The 
complex potentials for the present problem are given in equations 
1(5.31) to 1(5.33), which are here restated in the form: 

n'tej)   -   f ( q)    •      Ui'^)   =   9 (   C2) - (5.20) 

where 
2 

f(C)   =   AC- [(1   -Y,YJA   H (1- Y0Y9)A   ] a 

iTr"     ^    ^'2'"  J     C(Y1 - Y2) 

2 
9(0   =   A'C^U-Y^A   + (1- VJVJ) A'1  Y^j    , 

and _ 9 

(ttj+D^a^l)' 
32A=   "I 2  L(1:Y

2
)
  ^-a^-^Y^a^^)   ] 

2i/       , x 
•f o^(al+1)T12   ' 

(a. 1)
2
(CUH1)

2 

= 1 _£   r n   , v ^ 32A 
al"a2 

2      2 ta^Y^  (aj-: ^)+2Y1(a1-a2)] 

2i / , ,2 
+ ^(a2+1)    T12- 

On the boundary , these equations lead to the result 

18 
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f/ (zJ^fCae1^ 

[(I-Y^YJA .  (1 - Y-YJA' ] ae 
Aae    -    L^ ^  

Y1 -Y2 

■ie 

u'izj = gfce1^ 

ie     (i-Y.y^A.d-y^^A'     _ie 

- A ae     T   ae 
Y1-Y2 

and so, from (5.18), 

(5.23) 

r 9 -18   (u + iv)     =   e   
a a 

pJd-Vo) A-:(l- Y9YJ A']  -   p  [(1-v YJAnd-Y^JA'] 
=■ 6 A -; 6/' - — _ —L-i —  

Y1-Y2 
(5.24) 

-216  f    -        -         61Kl-Y1Y2)A.(l-Y2Y2)A,]-62[(l-Y1Y1)A-t(l-Y1Y2)A   ] 
-, e jpA+ p^1   -     

' Yl " Y2 

Upon substitution of expressions (5.23) into (5.24) the following 
result is obtained a'fter some manipulation: 

u + lu„ 
r e h: 

(I-Yjj^l-Vj)2 

2    2   2 
[1+(Y1 + Y2)  -Y1Y2 ](a14a2)H2(Y1 + Y2)(a]-o2) 

•2i(l-Y1Y2)(Y1+Y2)Tl2 

+ e'2i^2(Y1-iY2)(a1-i a2)+2(li Y^) (a^^) 

!4i(1"YlY2)Tl2]  ' ' 
(5.25) 

... ^wtt'-i«.-«»»-*»"- 
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Now from the definition of   YI «nd   Yo   in (5.19), they are either 
both real, or complex conjugates.   The separation of (5.25) into 
real and imaginary parts then follows easily, and we have for the 
radial displacement due to plane-strain: 

a 

where 

u 
— -A'   +   B' cos2e  T   C" sin2 9   , (5.26) 

^J"  'vV'-^i'V^^'VV'vVl A' = 
2 2 

(1 -Y^   (1 -Y2) 

2WVY2)(CTr 02h (j^iViv^ ] 
B1 - -     * * 5 '-f i—^      , (5.27) 

(1 -Yj)   (1 - Y2) 

^2(1 - ^Y^ Tl2 

O   - - 2 9     . 
(1 -Y^    (1 - Y2) 

Briefer expressions may be obtained (as in the stress solutions of I) 
by using the constants 

kl   =ala2'    ^^V^*'     k3 = ^V^y :'dl  ' ^ '   (5'28) 

Tnen 

A' = - -H22j[(k1-l)2+l<3(k1+ 1)1(0^ a2)-t (k^DOc^ k^i l)^-o2) , 

B' = - H^OV k3^  !) / ^x" i)^! ■ ^^ (ki ' ^^i" ^^ (5-29) 

C,--^2k.{kliV  1)T12  • 

By substitution of values equal in magnitude but opposite in 
sign to the regional stress components in the third of (5.14) we and 
the constant axial strain, 
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ez^-(b120l     ^^ll^' 
(5.30) 

and calculate the additional radial displacement caased by this 
departure from plane-strain.   Setting   ax = o   = 0 in (5.14) we 
find the relations between this and the additional strain components 

0        J      0 

e     and   e   : 
x y 

o 
12 x 13  z 

(5.31) 
e    = b  .0 
z 11   z 

However, since we are interested in the radial strain in a direction 
at an angle   8 to the x-axis we use the transformation 

2 2 
e   = e cos  0      e  sin  9= Me   -• e    -   (e - e )cos2 6 1    , 
rx y.xy      xy 

so that, from (5.31), 

e°= 2b^bi2-
bn<bi2-V

cos2e)- 

At the hole this corresponds to the comparative radial displacement 

u  /a, and so, using (5.30), 

1 

\_= -    ^  (bl2V b13a2 + W1 V b13H(bl2-bl3) COS20 1 
(5.32) 

By means of I(i.3) this expression can be put into the form 

it O 0 0 

_^ = -4T   |(vlH V  (al ' 02h  (V1 " V2) ^f^^^l ■  V2) a3 
a 

H [(v^ - ^(a^^) -< (v1-v2)2(o1-^)-2(v1-v2) o3]cos2 8 j   (5.33) 

21 



which can then be combined with the plane-strain solution given by 
(5.26) and (5.29) to obtain the complete solution: 

u 

"7 =   A90 + B90COs2eHC90Sin2e' (5-34) 

where 
,2 

(V.T vj f 2 vvr v2,      1 

2        2 
r vi ' v2 )   vi 

2E1    G3   ' 

^f^2(kr1)(ki 
2        2 

^o-MWV^VV1^^ <v^ (5>35) 

(v,-vA)     ä v - vr r vvrv  i vi  2 
•4<22(kr1'(kiJk3+1) ■ ^rf-jW+ %f- 03 

C90 = -H221VW1)T12. 

The constant   -L-   can be expressed in terms of E, , v, and k   thus: 

1-v* 

^=77^    ' (5'36) 
E
i i 

5. 3   Isotropy 

The result for an isotropic material may be obtained by letting 
= E, v, = V2 = v ,    ^1 = 1 

These expressions then reduce to 

E1 = E   = E, v1 = v2 = v .   k1 = 1   and   k3 = 2   in (5.13) or (5.35), 

22 
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A   =   "  i(CTl4G2"va3)   ' 

B   --   -   - fd-v^Oj-a), (5.37) 

C=   -fd-V2)    T12     , 

which, of course, are the coefficients in the expression 

=  A + B   cos 9 C sine (5.38) 

6.    Application of the radial displacement, formulae 

6.1   Development of procedure 

In each of the expressions for the radial displacement, (4.17), 
(5.11),  (5.34), the result depends on only three parameters which are 
constant for any particular hole.   No matter how many measurements 
of ur   are made at various directions 9 in that hole, it is not possible 
to gain any more information than that of the values of the parameters 
A0. BA , CU .   However, in order to determine the six   components of 
regional stress, it is necessary to determine the values of six parameters, 
To do so, measurements must be made in a second hole with a different 
orientation.* 

In each hole, a minimum of three diametral strain measurements 
is adequate but more may be made to improve accuracy (see Panek,  1966, 
for procedure in the Isotropie case).   Denoting the three measurements 
by suffixes 1,2,3 we have 

u 
-^ =  A + B cos 29,  + C sin 29,  , 

a 1 1 

u 
ul = =  A + B cos 2e9 + C sin 290 , (6.1) 

u 
Ll— =  A + B cos 29^ + C sin 29. . a 3 3 

*   In some circumstances p-.e ".surements in a third hole may be necessary: 
see note at end of Section 6.2. 
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The determinant of the coefficients of A, B, C in (6.1) is 
4 sin (9j - &2. ) sin $2 ~ ^3 ) sin (®3 ~ ^l)   showing that these 
parameters may always be determined. 

When measurements in two holes, with orientations   0^ 
ar.d  00   (sav)' have been made, six parameters, Ap Bj, C,, An, 
B,, Co . are available for determination of the regional stress 
components.   For definiteness, we suppose that 0 ^ 01 i 0,   ^ TT/2 , 
and so indicate the place of the exceptional values of 0 in the 
scheme. 

It is important to remember that the regional stress components 
in the form   Ji   , a? , a,  ,  T^ ,  !„„, T^I   are referred to axes fixed 
on the axis of the hole and hence will change value as the orientation 
of the hole is changed.   Before proceeding to solve the six equations 
for the regional stress components the formulae for A-, B^ , C^  must 
be expressed in terms of components referred to a single system of 
coordinates.   There are several reasonable systems, but it seems 
preferable to choose one in which one axis is an axis of elastic symmetry. 
We denote the chosen system by   ( x^ ,   x^ , x-^   )   and the components 
of regional stress   R...   Then we choose Ox?  to be anaxis 

i i •* ** 
of elastic symmetry, so that it is identical with Ox-^   (Fig. 3).   We 
could choose   Ox? to be a geographical direction, or to be identical 
with the Xi-direction defined for either of the holes (but not by both 
unless both holes lie in a plane through an axis of elastic symmetry) 
(Figs. 1 and 2). 

Let   ^ i be the angle made by the x^-direction of the first hole 
to   Oxi  , and.   ^2   t^e arigle made by that of the second hole.   The 
direction cosines, dP|   =   cos (J^OXP)   (m = 1,2), of the x,-directions 
lefined for the first hole (m = 1) and second hole (m = 2) with respect to 

the (x^ ) coordinates are 

d
1l       =      COS   ^m        ' d10   =      Sln';'m       ' d17=      0       ' 11 m 12 m 13 

d«.   =   - sin i  cos0   , d„   = cost1   cos0    . d0.   = - sin0   ,    (6.2) 
21 m m      22 m ;;       23 m 

,m . . ,m . ,m 
d, ,   = -sin )   sin0    ,    o,„   =cosüf  sin0   ,    d,„   = cos0 
d mm 61 mmoj m 

If we choose   Ox,   to be identical with Ox, for m = 1 (say), then »Ji, = 0  , 
with consequent simplification in that case. 
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If we denote by   o.j    (m = 1,2) the regional stress components 
referred to the x^ - coordinates and x^ - coordinates respectively, 
tnen they may be expressed in terms of tne R., (the regional stress 
components referred to tne xB - c^o.   inates)     by means of the 
transformations 

m 
a'"   =   d , d   R, (summed over k, I) 

ij ik  il kl 
(6.3) 

Written out in the original notation for the regional stress components 
this gives the expressions 

m 9 9 
a,   =   R^cos  i'    + R„0sin ;•     +2R1-Sinüi   cos; 

1 11 m       22 m 12        m        m 

m22 22 2, 2 
a-    =   R^sin ill   cos 0    + R_-Cos ill   cos 0    + R^sin 0     -2Rl0sin, cosili cos  j 

2 11 m m        22 m m       oi m 12       m       m m 

-2R„^cosil(  sin0  COSA    +2R,„sinili   sin0  cos0 
23        m       m        m IJ        m       m        m 

m 2 2 2 2 2 
a',"   =   R^sin Ji   sin 0    + R0_cos ill   sin 0    + R. .cos 0 

ö 11        *m m        22 ym        ^m       -i3 ^m 

-2Rir.sinü(   cosüi   sin 0     +2R-„cosi   sin0  cos0    -2R1,1sinüi   sin0   cos0 
12      Tm      Ym m 23      Tm       m        m 13       m        m        m 

m ,224 
T,    = - R, ,sinili   cosüi   cos0     + R0_sinüi   cosili   cos0     +RlOcos0   (cos  A   -sin  ill ) 

12 11        m m m       ^Z        m m m        li        m m m 

R0, sindi   sin0     -R,,,cosil(   sin0 
23      *m        m        13       Ym       m 

(6.4) 

m 
T2. 

R,,sin^üi  sin0    + R00cos üi   sin0   cos0     -R,„sin0   cos0 
11 m       m       z<s m       m        m       33        m m 

2 2 
- 2R „sinili  cosüi   sin0 cos0    +R-_cosü;    (cos  0     - sin 0   ) 

12mmmm^3m m m 

2 2 
+ R,.sinili   (sin 0    - cos 0   ), 

13       m m m 

9 9 
T   ^ = -R,,sinüi   cosüi   sin0     + R00sinüi   cosüi   sin0     +R1„sin0   (cos  üi   -sin  üi  ) 

13 11        m mmzZmmmiZm m m 

+ R0- sin ^0000     + R    cosi|i   cos0 
23 m m        13 m        m 
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The exceptionaj cases   .\ = 0, 02 =    /^   bring simplifications, 
particularly if   ;    or ^    are chosen conveniently. 

(i) _£_, = 0;   j'. = 0 .   In this case the   x,   - direction is chosen 
arbitrarily in the plane of symmetry and the   Xi-direction is 
chosen to be identical with it.   Then, from (6.4) 

1 D 1 D 1 D 
1 112 22 3 JJ 

T12 R12'     T23     R23'    T13 R13' 

(6.5) 

and the formulae (5.13) become 

1 
Ao   =    "  E-1

(R11+R22-V2R33)' 

Bo   =   -E^(1-V2)(R11-R22)' 

i7(1-V2)R12 

/ 
r     (6.6) 

rr 
(ii)    0,   =     /_ ;   i|(   = 0 .    This choice of   iL   means that the 

xK - direction is in the plane of cross-section of the hole, 
and the x^ - direction coincides with the axis of the hole. 
Since the   xj   - axis for  0j = 0 in (i) above can have any 
direction in the plane of elastic symmetry, the choice of 
iji = 0 in each case does not prevent the selection of a 
common xB   - coordinate system.   From (6.4), we have then 

2 2-D 
2~D o1 -   R11,    o2   -   R33,     a3   -   R22, 1 

I   (6.7) 

2 " R 2 R 2 R T12    '    '    13'    T2J   "    "    23'    T13   '    R12  ' 

Bhd the formulae (5.35) become, using (5.36), 
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So = -^ j^r[{ki-l)2 + k^i ^ +^i+^2H*n+*3j 

-x/i 
4E. )  .i^(^-1)^S+1)^r4/^ir^^-k^ R22 ' 

1        k 1 1 

90 4E, 
'i 

^n+hJ 
(6.8) 

4E, 
f'-t 1 "vi 2) vrv2 
^-(^^«(k^k^D^Vj-^)    /(R11-R33)     -^   R22 

90 
2Elk' 

'13 

Unfortunately, we cannot make appropriate substitutions (as we 
have for. 0  =   0,   rr / 2 ) in the expressions   A^, B , C^ (4.18), for 
0  < 0 <TT/2 , to obtain formula with explicit dependence upon the R.., 
because their dependence on the regional stress components arises in 
a complicated manner through the a      and A     (and, more simply, through 
ez ),   The dependence of the   a^ on can be 1'    2 '    12' T13' T23 
found only by solving equations 1(4.2), and that is not practicable until 
numerical values can be assigned to the coefficients (calculated from 
the elastic properties"of a particular material with the appropriate   0  in 
each case).   The   A    can then be calculated from 1(4.12).   The component 
a3   is introduced through   e   , which is given in terms of stress  components 
by (3.2).   In a practical case, a      , A     and   e    would then be expressed 
in terms of the   R..  , using the appropriate values for the angles 0     and 
i|/     for each hole        in    (6.4). 

The elastic parameters   G    and   H     also depend upon   J  ,    and 
the values appropriate to  0, and 0    must be calculated.   All the equations 
are linear in stress components and when all the substitutions have been 
made we obtain expressions   A,,   B   , C     for   0=0 
and homogeneous in the stress components   R, 
B 

U 
y no c 

r linear 
a similar set A, 

_r ,   C     for   0 = 0     ,    I|I = iji«.   If we denote by   A| etc. the experimental 
values determined through equations of the form of (6.1), we can write 
the result as six equations thus: 
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allRll+a2R22 + a3R33+aiR23+a5R31+a6R12 = A! 

bllRll + b2R22  b3R33 '  b4R23 + b5R31 + b6R12 = B! 

cllRll 4 C2R22 : C3R33 + C4R23 + C5R31 + C6R12 = C! 

aiRll + a22R22 + ^33  ^23 + ^31 + ^12 = A2 

blRll " b22R22 J ^33 : b24R23 + ^31 H b26Rl2 = B2 

2     2     2     2     2     2       e 
C1R11 +C2R22 +C3R33 +C4R33 +C5R31 +C6Ri:: = C2 * 

(6.9) 

So long as the matrix of coefficients a.   etc. in (6.9) is 
non-singular, the equations may be solved for the R...    For 0, = 0, 
I   = 0 expressions (6.6) are substituted for the first three expressions 
in (6.9).   If  02 = TT/2 ,   I2   = ^ expressions (6.8) are substituted 
for the second three of (6.9).   A complete solution cannot be obtained 
by having   0, = 0 and  09 = "A   simultaneously, since R23   occurs in 
neither (6.6) nor (6.8)   and the matrix of coefficients of the six 
equations is singular:   by omitting an equation a solution could be 
obtained for the other five components.   It does not seem practicable 
to determine whether there are any other conditions for which the 
matrix is non-singular.   However, the possibility of this occurring 
must not be overlooked and, indeed, steps should be taken to ensure 
that the matrix is "well-conditioned" in practical applications.   This 
could be done by evaluating its determinant at a selection of possible 
relative orientations of the holes, and rejecting those giving the 
smaller values.   One would be especially suspicious of holes at 
right-angles to each other. 

6.2    Summary of method of application 

L2v' Gv 

(1)      The constants k      are evaluated in terms of the b     (assumed 
known) for a pair of values   0    and  02 , through 1(1.6).   The 
constants   l^. K.,, X^. Hv , Yv , 6^ y^. b^, ^ L    , * 
Hv ( v = 1,2,3) are then determined for each of  0, and 00 by 
means of 1(2.6'), 1(2.17), 1(2.18), 1(2.20), 1(4.6), 1(4.81, 
1(4.9),  (2.8) and (4.16). 

28 



(2) 

(3) 

a 
terms of   o. 

a30 in The equations 1(4.2) are solved for a^Q, a^Q« a^n' a30 
Jl '   09 ' Tl'1' Tl^' T23' usin9 t"6 coe^icients 

appropriate fo eacrh of ifie values  0^ and  02 in turn.   These are 
substituted in 1(4.12) to obtain the values of  Av(v= 1,2,3) 
(using the appropriate coefficients for each of 0, and   02 ) in 
terms of   o 
and   09   are 

1' a2' T12' T13' T23"   The values 0^ the krs ^or ^1 
e used in turn in (3.2) to obtain the values of  ez in 

each case, in terms of  a, , u«, a '23- 
R       R The orientation of the  x,  , X2- axes in the plane of elastic 

symmetry is selected.   The       x| - direction is defined (Figs.  1 
and 2) by the intersection of a cross-section plane of the first 
hole with a plane of elastic symmetry, and   ij;,   is defined as the 
angle it, makes to the x^- direction:   ijio   is defined similarly. 

(4)      The values of the a 

(5) 

.     , a,,„, A , and   e_ for each of  $, and   0o vo     yo      v z i     \    *■ * 
are expressed in terms of the R^ by means of (6.4), using the 
L appropriate for each hole . 

The resulting expressions for   a     , avo, A  , A    and   ez for 
!>. , 1(1=111,   ar? substituted in (4.18) with coefficients 

0.   and form the first three expressions in (6.9). 

a ._, av.^, A, A.   ana   e, 
0 = 01 ,   iji- 
appropriate to 
A similar process for 0 = 02* ^ = ^ gives ^e second three 
expressions. If 0^ = 0, the expressions (6.6) can form the 
first three of (6.7); if 0, = TT/2' (6.8) can form the second three 
Of   (6.9),   SO long as  the X? -  <-nnrHinflt-oc aro annronri^felv 

selected. 
coordinates are appropriately 

i 

(6)      The determinant of the coefficients of the fy in the resulting 
set of expressions is evaluated to ensure chat it is not zero 
or very small. 

(7) If this test gives a satisfactory result, stress-relief tests 
are made in boreholes at the selected angles.   Diametral 
measurements are made in three directions to obtain a set 
of equations of the form (6,1) for each borehole.   From the 
first hole we calculate dimensionless parameters   Af, B? cf 
and from the second parameters   A^, B^, CS .   These form the 
right-hand sides of equations (6.9) which can now be solved 
for the regional stress components R.. 

Note If the ground is pnly weukly anisotropic it is probable that 
the equations (6.9) may not be well-conditioned since, as 
shown by Gray and Toews (1967), and also by Bonnechere and 
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i    *^WKtv"i<i«*:-15"-nf i«'. 

Fairhurst (1968) with reference to the "doorstopper" method, 
the six equations obtained from any pair of holes are not 
independent wnen the ground is Isotropie   and measurements 
in three holes are necessary.   The arguments of the above 
authors do not apply to ground which is only transversely 
isotropic, although instances of dependence between the six 
equations (6.9) other than that noted in Section 6.1 (0=0, 
02 = ^/) may exist.   If the matrix of coefficients of (6.9) is 
zero, or close to zero (either because of weakness of the 
anisotropy or because of limitations in choice of hole-direction), 
it will be necessary to use a third hole (0=00 , '^ = IJJ~ ) in 
addition, and the results may be processed by methods discussed 
by Panek (1966) and Gray and Toews (1967). 

7.       Strain in the wall of a stress-relieved borehole 

Development of very small strain-gauges makes it feasible to 
measure the strain in the wall   of a borehole as the stress is relieved. 
This technique could be used to augment information obtained from the 
older method, and possibly to allow determination of the regional stress 
tensor from measurements in a single borehole. 

The components of strain in the wall of the hole, r = a, in the 
(r, 6, z) coordinate system are   GQ < ez < Yrz •   Of these   e    is 
constant and is given by (3.2), while 

2 2 
eA   =   e sin 9 - 2 y    sin9cose + e    cos 8   , (7.1) 
9 x xy y 

YQ      =   Y    cos9 - Y    sinG (7.2) '9z yz 'xz 

7.1    General case, o  <  0 <    /_ 

In this case   e , e   , YXV. YVZ, YXZ   are given by equations 
(2.3) to (2.8) and   ez byy(3.2f, with the Wv(z ) = - [Wv(zv) ] 

as given by (4.9).   From (7.1),  (2.3),  (2 .4) and (2,5), we find that 

3 

= ^     [  M W (z } + M  W (z ) 1  + ( K, sin29 + K0cos2e ) e    ,(7,3) 
vvv vvvl I z e9 

v = l 

where 
2 2 

M   = L, sin 9   + L0   cos  9 - Lr   sJn9cos9 , (7.4) 
v       Iv 2v 6v 
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L , L_ and L being given by (2.8). For the boundary of the 
hole, r = a, we use the value of [ Wv(z ) ] , given by 1(4.13), 
so that then 

(a    Y  - A ) sine - i (a    y + A   ) cose ,_   ,-> 
w ,    \   =   _      vo v      v vo v      v (7.5) 

v   v sine  -   X cose 

From (7.2),  (2.6) and (2.7), we find that 

3 

Yn    = y    [NW(z)+NW(z)J+K. cos9 e    ,     (7.6) Bz       - v    v   v v    v      v 4 z 
V =   1 

where 
N   =     |   (L,  cosö - Lc sine )  , (7.7) 

v 4v 5v 

L 
In 

.     and L,.     being given by (2.8)  , and W (z ) by (7.5), for r = a. 
n both (7.3) and (7.6), the value of   e   is given by (3.2): 

ez = -(k13ai+k23a2+k33C3   +   k34T23 ) ' (7 '8) 

Equations (7.3) to (7.8) give the distribution of strain in the 
wall of the hole as a function of the elastic constants, hole orientation 
and regional stress tensor.   The dependence of  a      and A   on the 
components oi regional stress must, in practice, be calculated by the 
methods indicated in Section 6. 

7.2    Case   0=0. 

In the case   0=0,    /2 , the plane deformations and the axial 
shear ocfo.nations urc "uncoupled" and so   GQ  and   YQ    mav be y z       ' 
calculated as separate problems. 

•i 

■( 

Transformation of the plane-strain relations (5.1) to the (r,9 ,z) 
system of coordinates gives the relation 

e. = b. .a, + b. _a    -i b. „a 
6        lie      12 r 13z 

but since   c   = 0 on r = a, we have 
r 

ee^iVbi3cz'oni=a (7-9) 

i 
3] I 

■■ 



■-' 

v^rT<i«»dl^j^|»fl^j!><-seVT'*-. 

where   b      and b       are given by 1(1.3). 
11 10 

The values of Og and a may be obtained from 1(5.5) and 
1(5.7) with the signs changed (since here the regional stress is 
being removed); 

o   =   - (a   + aj + 2 (a    - a. ) cos2e + 4 T   sinZB , (7.10) 

a    = - o„ - r^-  [  2(0,  - 0o) cos29 +4 Tl0sin29 ]   .       (7.11) 
z 3     b33 12 12 

Substitution of (7.10) and (7.11) into (7.9) give the result 
for r = a. 

Ge = "W^ "bi3a3 +2(bii -^^i -G2)cos2e +^nsin2Q 1 

(7.12) 

From 1(1.3) this may be written 

'2   2 
Eie9 = "(ai+ a2)+ V2a3 + 2(1 "T V2 ^ ^ (ar a2)c0s2e + 2 Ti2Sin2Q ^ 

(7.13) 

By changing the sign of 1(5.19) (because the regional stress 
is removed) we have the component of shear stress in the wall of 
the hole: 

TA    = -2 (T    cos9 - T, „sinG ) . 
9z - 2J lo 

(7.14) 

(From (5.1) (suitably transformed) we have the relation 

2Y92
=;b44Tez ' 

and so, from (7.14) 

Y9Z 
= b44(T13Sin9 -T23C0S9)  ' 

or,  using 1(1.3), 

MYn    = T.^sine - T00COS9. 
9z        13 23 

32 

(7.15) 

(7.16) 

—    - MBi mmmm 



Eiez=   V2(0l+a2) - 17   a3 • (7.17) 

Equations (7.13),  (7.16) and (7.17) give the components of 
strain in the wall of the hole directly in terms of the elastic constants 
and the regional stress components referred to axes fixed on the hole, 

7.3   Case   0 =   /„ 

TT 
A slightly different procedure is used for   0 =   / 2 in order to 

avoid the labour of transforming the equations (5.14), which apply 
to this orientation of the hole. 

re 
The stress components   ox , a    , T      are derived from components 

ferred to the (r, 0, z) coordinates by the transformation 

2 2 
a   =   0 cos  9 + o.sin 6 - 2T nsin6cos9  , 
x        r 6 r9 

2 2 
0=0 sin 9 + axos 9 + 2 T nsin9cos6 , 

y      r 0 r9 
(7.18) 

2 2 
T     = (0   - oJ sin6cos9      T „(cos 9 - sin 9). 
xv       r       (f r9 

In the present case, for r = a, or -   \Q = ® > and 09 is given by 
1(5.40) and 1(5.41), and az by 1(5.46) both with the signs of the 
regional stress components changed (since they are being removed, 
not applied). 

From (5.14) 

e    =  b. .a     +   b.-a     + b.a   , 
x 11  x 13  y U z 

e    =  b. „a   -: b00a     + b. „a    , 
y 13 x       33  y 13 z 

2Y     =   b..T     . xy        44 xy 

1 
(7.19) 

1 

The remaining component,    ez   is given by equation (5.9), which, 
by use of 1(1.3) can be written: 

1 
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Substitution of (7. 18) in (7. 19) and use of (7. 1) gives the result 

4 2 2 4 2 2 
e„ = a (b    sin 9 + 2b    sin 9cos 9 + b    cos  9 + b   .sin 9 cos 9) 

-i a (bl0sin29 + b, 0cos 9). (7.20) 
z    12 1 J 

From 1(1.3) and 1(5.46), this can be written 

F F 
4 2 2 14 12 2 

E,e   =aA(sin 9 - 2v0sin 9cos 9 +  —cos  6 + "77   sin 9cos 9 
19      9 2 E M 

2 2     2 2 2 
- (v sin 9 + v-cos  9 )    ] + (v sin 9 + v2cos  9) (a   - v     a   - v.a   ) 

(7.21) 

where, from 1(5.40 ) and I (5.41) 

H-aQ= - (o^ a2)[ ^(k^ l)+(k1- I)2 - (k^ k3+l)(k1- 1 ) cos 2 9 ] 

-(o^ a2)(k1+ k3 + 1) [  k^ 1 -(k^ l)cos29 ] +2 T
12k3(ki + k3+ l)sin29 , 

(7.22) 

H   =   (k2 + 2k    + l)-2(k2-l)cos2e+ (k2-2k +l)cos229 (7.23) 

To calculate the component  Yfl    we use (7.2) in conjunction 
with the relations from (5.14): 

Y     = |b , .T yz     E   44  yz 

Yxz=(bll-b12)Txz' 
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and the expressions I 5.66) for   T     and   T    , with signs changed, 
The result is ' 

(i + t)(T    sine - tT     cos9) 7 7 

Y.jz   =    22 2^    [ *b44COS  9-   (bii-bi2)sin 6 ]'  (7'25) 

sin 9 + t cos  9 

where, from 1(5.68) 

2                  b44                                      El 
t   =    15    = 

l    . (7.26) 
Mb      -b    ) 2M(1 +V1) 

v   11 12y 

Using 1(1.3) and (7.26), this maybe written 

ElVez = (1 ^^ (1 +t) ( Ti3sine " tT23COse) ' (7-27) 

The axial strain is given simply by 1(5.3), which may be written , 
by means of 1(1.3): 

E.e    =   - o   + v a   + v.o     . (7.28) 
1 z 6        112   2 

Equations (7.21), (7.22), (7.23), (7.27) and (7.28) give the 
components of strain in the wall of the hole (for 0 = TT/2 ) directly 
in terms of the elastic constants referred to axes fixed on the hole. 

7. 3   Isotropie Material 

The results for an Isotropie material may be obtained simply 
by putting E1 = E2 = E/v1=V2=v,   M=|i = ^ E/(l + v ), in (7 .13) , 
(7.16) and (7.17).   The results are 

Eee = - (a1 + a2) + va3+2(l-v )[ (Oj-a^cosZe + 2T12sin20 ] ,  (7.29) 

EYQ    =    2(1 +v )( T. „sine-T0„cose ) , (7.30) 
92 io 16 

Ee     =   v( a   + a_ ) - a„    . (7.31) 
z i       e. i 
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7.4    Measurement 

In order to compare the results of this section with measured 
values we require the normal components of the strains calculated 
above resolved in any direction tangential to the wall of the hole. 
Let e^ be the normal component of strain in the wall in a direction 
at an angle   uu  to the positive   9-direction at any point   then its 
value in terms of   e„ ,  e  , v«     at that point is given by the transformation 

9     z     9z 

2 2 
€   = e^cos uu + e   sin uu   +   2 y^ sin JU cos uu . (7 . 32) 

ID       9 z 9z 

If a triple straii.-gauge rosette were used, with aauges at 
equal angular intervals, then the three angles   0,   /„,'/_, or   /. , 

. Job 

/„,      /. would be obvious choices for   uu . 
L b 
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